skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Efthimiou, Eleni"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Efthimiou, Eleni; Fotinea, Stavroula-Evita; Hanke, Thomas; Hochgesang, Julie A; Mesch, Johanna; Schulder, Marc (Ed.)
    Since American Sign Language (ASL) has no standard written form, Deaf signers frequently share videos in order to communicate in their native language. However, this does not preserve privacy. Since critical linguistic information is transmitted through facial expressions, the face cannot be obscured. While signers have expressed interest, for a variety of applications, in sign language video anonymization that would effectively preserve linguistic content, attempts to develop such technology have had limited success and generally require pose estimation that cannot be readily carried out in the wild. To address current limitations, our research introduces DiffSLVA, a novel methodology that uses pre-trained large-scale diffusion models for text-guided sign language video anonymization. We incorporate ControlNet, which leverages low-level image features such as HED (Holistically-Nested Edge Detection) edges, to circumvent the need for pose estimation. Additionally, we develop a specialized module to capture linguistically essential facial expressions. We then combine the above methods to achieve anonymization that preserves the essential linguistic content of the original signer. This innovative methodology makes possible, for the first time, sign language video anonymization that could be used for real-world applications, which would offer significant benefits to the Deaf and Hard-of-Hearing communities. 
    more » « less
  2. Efthimiou, Eleni; Fotinea, Stavroula-Evita; Hanke, Thomas; Hochgesang, Julie A; Mesch, Johanna; Schulder, Marc (Ed.)
    We propose a multimodal network using skeletons and handshapes as input to recognize individual signs and detect their boundaries in American Sign Language (ASL) videos. Our method integrates a spatio-temporal Graph Convolutional Network (GCN) architecture to estimate human skeleton keypoints; it uses a late-fusion approach for both forward and backward processing of video streams. Our (core) method is designed for the extraction---and analysis of features from---ASL videos, to enhance accuracy and efficiency of recognition of individual signs. A Gating module based on per-channel multi-layer convolutions is employed to evaluate significant frames for recognition of isolated signs. Additionally, an auxiliary multimodal branch network, integrated with a transformer, is designed to estimate the linguistic start and end frames of an isolated sign within a video clip. We evaluated performance of our approach on multiple datasets that include isolated, citation-form signs and signs pre-segmented from continuous signing based on linguistic annotations of start and end points of signs within sentences. We have achieved very promising results when using both types of sign videos combined for training, with overall sign recognition accuracy of 80.8% Top-1 and 95.2% Top-5 for citation-form signs, and 80.4% Top-1 and 93.0% Top-5 for signs pre-segmented from continuous signing. 
    more » « less